
Power Budgeting of Big Data Applications in
Container-based Clusters

Jonatan Enes∗, Guillaume Fieni†, Roberto R. Expósito∗, Romain Rouvoy†§, Juan Touriño∗
∗Universidade da Coruña, CITIC, Spain, †University of Lille / Inria, France, §IUF, France

∗Email: {jonatan.enes, roberto.rey.exposito, juan}@udc.es, †Email: {guillaume.fieni, romain.rouvoy}@univ-lille.fr

Abstract—Energy consumption is currently highly regarded
on computing systems for many reasons, such as improving the
environmental impact and reducing operational costs considering
the rising price of energy. Previous works have analysed how to
improve energy efficiency from the entire infrastructure down to
individual computing instances (e.g., virtual machines). However,
the research is more scarce when it comes to controlling energy
consumption, specially in real time and at the software level.
This paper presents a platform that manages a power budget
to cap the energy consumed from users to applications and
down to individual instances. Using containers as virtualization
technology, the energy limitation is implemented thanks to the
platform’s ability to monitor container energy consumption
and dynamically adjust its CPU resources via vertical scaling
as required. Representative Big Data applications have been
deployed on the platform to prove the feasibility of this approach
for energy control, showing that it is possible to distribute and
enforce a power budget among users and applications.

Index Terms—Energy consumption, Big Data, Container-based
virtualization, Power budget, Resource scaling

I. INTRODUCTION

Energy efficiency is currently one of the most studied
research topics across computer systems for its importance as
part of the movement towards a more environmentally sustain-
able future. With well-established computing paradigms, such
as the Cloud [1], or the rise of computing-intensive fields, such
as Big Data [2], the energy consumed by users and applications
is becoming of prime importance for system administrators
and service providers.

However, most of the published literature focuses on the
energy consumed as a whole by entire systems [3], individual
physical hosts [4], [5] or, at the most, by Virtual Machines
(VM) [6], as these are the most common means of virtu-
alization. The aim of this paper is to contribute to moving
the research forward when it comes to energy monitoring and
management in large infrastructures [7], [8], such as Big Data
clusters, while going over some of the least covered scenarios.
To do so, we study, address and combine fine-grain software-
based energy monitoring with an energy capping capability
applied to OS containers. More precisely, our main objective
is to be able to manage energy as a first-class resource that
can be accounted, restricted and shared among applications
or users, in the same way as CPU or memory. With this
goal in mind, several technologies and tools are integrated
and deployed to implement a platform on which Big Data
applications can be executed in container clusters, allowing
users to set a power budget on their applications and have it

enforced at any moment, in a dynamic way and in real time.
The key contributions of this paper can be summarized as:

1) We introduce a novel platform to manage energy as any
other system resource, which can be distributed among
containers, applications and users in real time;

2) We analyse two representative use cases of the platform
running Big Data workloads and showing how energy can
be distributed dynamically in container-based clusters.

II. BACKGROUND

In this work, energy monitoring focuses on CPU exclusively
and, more precisely, on individual containers. This decision
is not only backed by technical limitations, but also by
design choices. First, considering that we rely on software-
level energy metrics, energy usages that are out of the actual
server chassis (e.g., cooling, rack) are discarded to avoid
any physical hardware deployment. Second, any energy study
that uses software-level monitoring exclusively, particularly
for virtualization technologies like containers [9], [10], is
limited to CPU and memory energy metrics as these are
typically provided by RAPL directly or inferred via lower-level
processor information (e.g., Linux perf tool). This fact leaves
out devices, such as disks and network cards. Finally, from
the CPU and memory energy metrics that are available, only
CPU is used as per design our platform scales CPU resources
according to CPU usage, without taking into account memory.

Regarding the motivation for using containers as the means
of virtualization, it has to be noted that besides their increasing
popularity for hosting a wide range of applications and ser-
vices, the most popular container engines (e.g., Docker [11],
LXC [12]) rely on cgroups as the underlying means to manage
the resources given to containers. This technical feature makes
it possible to change their resource limits in real time by setting
the appropriate values within the cgroups file system. Our
platform relies on this feature to implement a form of throttling
to limit the energy consumed by the containers. Such throttling
is implemented via a precise, fine-grain control of the CPU
shares that containers have at any moment, taking advantage
of the ability to do so with cgroups. However, some limitations
have to be taken into account when deploying the user’s
applications using containers: 1) energy can only be limited
for those applications (or parts of) that are containerized;
2) containers have to be private and user attached; and 3)
applications should have some flexibility regarding the number
of cores presented to them, as they may vary along time.



Finally, some concepts regarding energy require to be
defined as they will be used later on. First, the term power
budget is used to express a given power limit that should not
be surpassed, which can be applied to the entire platform,
users and applications (as a set of containers). Second, the
concept of energy proportionality [13], [14] is used to explain
the behaviour of current CPUs when it comes to the energy
consumed compared to the work being performed. Such be-
haviour can be expressed as how the relationship between
both variables evolves according to the CPU load. On an ideal
CPU, such relationship would be constant and linear, that is,
the energy consumed by the CPU in idle state is zero, half
the maximum power at half load and the maximum when
usage is the highest. Unfortunately, real CPUs behave quite
differently, causing an inescapable impact on the experiments,
as further discussed in Section V. With the currently available
hardware, not only the energy consumed is not zero when
the CPU is idle, thus having an idle energy consumption, but
also its evolution according to the load is logarithmic instead
of linear [15]. So, we define the energy efficiency ratio as the
amount of CPU shares used according to the energy consumed
in a given time window.

III. RELATED WORK

Previous works have studied different energy-related topics
on Cloud environments, using VMs or containers. These topics
include energy monitoring, management or ultimately capping
on systems, from individual applications on single processors
to entire workflows across data centers.

Regarding energy monitoring, a few tools can report on
energy metrics from running containers, such as DEEP-
mon [9] and POWERAPI [16], [17]. Both solutions rely on
low-level operating system utilities (e.g., perf ) that enable
precise control over events triggered by individual processes
or threads. These events, in conjunction with other system
metrics, are strongly correlated and thus can be used to
formulate a power estimation of a container. In addition, these
solutions impose a near-negligible overhead. Related to this
topic, it is interesting to point out a study of the energy
consumption overhead that container-based virtualization im-
poses on the applications [18]. In this work, the authors run
several workloads in and out of Docker containers, concluding
that they pose a small overhead both in runtime and energy
consumption, the latter being mostly related to the former.

There are other works that present frameworks and plat-
forms with a similar objective to the one proposed in this
paper, which are worth describing in more detail:

• DOCKERCAP [10] is a software-level power capping
framework for Docker containers. This framework is
similar to our platform in that it can enforce an energy
limit to be respected. Nonetheless, our work goes further
by considering not only individual containers, but also
clusters of them across several hosts, while also targeting
much more complex workloads and higher-level abstrac-
tions such as multi-container applications and users. We
also present the energy overheads that inevitably arise

due to the longer execution times when restrictions are
applied, giving some insight into how these overheads
vary according to the underlying CPUs’ energy efficiency
and proportionality. This is further exposed with the
larger range of power caps we use (DOCKERCAP goes
from 20W to 40W, while we go up to 1500W);

• NORNIR is described in [19], [20] as a self-adapting
framework capable of enforcing energy constraints dy-
namically by using mechanisms such as DVFS or core
reallocation. Most interestingly, this work uses a feedback
loop similar to the one used for DOCKERCAP and our
platform, backing it as a good strategy for real-time en-
ergy enforcement. However, NORNIR focuses on parallel
applications running on shared-memory systems, leaving
out any virtualization technology.

To summarize and put the proposed platform in context with
the previous related work, it has to be noted that our main
objective is to define a power budget that can be enforced
on users, applications and containers using vertical scaling of
CPU resources guided by specific policies.

IV. POWER BUDGET PLATFORM

Our main goal is to provide users with a container-based
platform where energy consumption can be monitored and,
to a certain limit, enforced. The overall architecture of the
proposed platform is described in Section IV-A. The control
of the energy consumed by the containers via CPU throttling
is thoroughly described in Sections IV-B and IV-C.

A. Architecture Overview

Considering the container as the basic infrastructure unit
that can be managed within the platform, the following entities
are defined to create richer and more flexible scenarios:
containers, applications and users. So, the proposed platform
is organized as a three-level hierarchy, as depicted in Figure 1,
showing the aforementioned entities from bottom to top. At
the lowest level, multiple containers can be grouped to form
an application. At the intermediate level, an application acts as
an abstract structure that adds up all the containers’ CPU and
energy metrics and, likewise, allows setting a power budget
to be respected by the grouped containers as a whole. Users
would be placed at the highest level, with applications attached
to them. Similar to applications, each user has an accounting
for the grouped energy and CPU and a power budget, which
is enforced down to the user’s applications through their own
budgets. Note that containers do not have any specific energy
limit, as power control is only considered at the user and
application levels. As containers are treated as black boxes that
are part of a more complex structure—i.e., an application—
there is no point in limiting the energy of specific containers.

With the above hierarchy laid out, the procedure to propa-
gate a global power budget down to the CPU limits of the
containers can be described, from top to bottom, in four
steps (numbered in Figure 1): 1) the global power budget
is dynamically divided among the users according to their
aggregated energy consumption; 2) at the user level, the power



Fig. 1: High-level overview of the platform architecture

budget is statically distributed among all its applications by
the container resource scaler tool [21] according to a ratio
configured by the user, thus setting a power budget for each
application; 3) at the application level, the power budget is
compared to the actual energy that is being consumed at the
moment to determine if any operation is needed to be carried
out. If that is the case, a request is created with the number
of CPU shares to be increased or decreased; and 4) if such
request is created, it is applied across all the containers by
adapting their CPU limits using cgroups. The first two steps
defined are fairly simple, as they merely distribute a power
budget dynamically (step 1) or statically according to a set of
ratios (step 2). However, steps 3 and 4 are more complex and
are further described in Sections IV-B and IV-C, respectively.
All these steps, referred to as active operations, are carried out
in order as needed (see Figure 1).

Regarding the external tools chosen to implement this
platform, several had to be adapted for the task in hand. For
the core feature of scaling the containers’ CPU, a framework
capable of creating a serverless environment [21] was cho-
sen as it readily supports containers and has proved to be
responsive enough in order to minimize overheads. For re-
source monitoring, two different tools were used for measuring
CPU and energy metrics, referred to as passive operations in
Figure 1. On the one hand, POWERAPI [16], [17] was used
for energy monitoring as it is capable of reporting container
energy usage in real time with high accuracy. On the other
hand, BDWATCHDOG [22] was chosen for CPU monitoring
and to store the energy metrics as provided by POWERAPI.

B. Power Budgeting Policy

The CPU usage and energy consumption of applications
play a key role when making the decision to change the
CPU limits during step 3. A first and simple policy would be
one that only takes into account energy consumption and that
scales the CPU according to whether it surpasses or not a given
threshold. However, this policy can easily cause instability as
the CPU patterns of Big Data applications can be unpredictable
at times considering that they generally go through multiple
processing stages that demand different amount of resources.

To mitigate this issue, CPU usage is also taken into account
to define a richer and more robust policy, as shown in Table I.

To illustrate the behaviour of the platform when deciding
if an action has to be taken, we use Figure 2 together
with Table I. This figure reports on the time series for the
aggregated CPU usage and energy consumption of a synthetic
workload used as a representative example. At the beginning
of the execution, CPU and energy remain low from second
0 to around 70, so there is no need for any action (State 3
in Table I). Then, from second 70 to around 220, there is a
sharp increase in CPU usage and, in turn, in energy consumed.
This sudden CPU spike causes the energy consumed to be
above the initial power budget (750 J/s), thus prompting the
platform to act and scale down the CPU shares to reduce
energy consumption (State 2). This action decreases CPU
shares from 12, 000—i.e., 120 cores—to about 8, 000, which
causes energy to be under the cap from second 220 to around
300. Note that, around second 220 to 240, the CPU limit is
the exact one to cause energy consumption to be just below
the cap, which can be seen as a perfectly controlled and stable
state. Both CPU and energy remain low from second 250 to
300, so no changes are needed and the platform goes back to
State 3, with the difference that the CPU limit is now more
realistic according to the power budget. At second 300, the
budget is increased from 750 J/s to 1, 000 J/s while at the
same time the CPU usage rises significantly until it becomes
a bottleneck, causing the platform to transition to State 4. This
state (the opposite of State 2) implies that the application is
using close to all of its CPU shares but, at the same time,
is not fully using its power budget. To act accordingly, the
CPU limit is progressively raised up to 12, 000 shares until
the energy consumed is near but below the budget (around
second 460). From second 460 to around 560, the platform
enters State 1, where, although the CPU is near a bottleneck,
energy consumption is really close to the limit and thus no
action is taken. Finally, CPU usage and energy consumption
decrease after second 560, so the platform switches to State
3, but keeping the CPU limit at 12, 000 shares.



Fig. 2: Time series for the CPU usage (top) and energy consumption (bottom) of the application

TABLE I: Policy decision criteria (PB: power budget)

State CPU Usage Energy Consum. Decision
1 - In PB Keep CPU
2 - Above PB Decrease CPU
3 Low/Medium Under PB Keep CPU
4 High/Bottleneck Under PB Increase CPU

TABLE II: Host hardware configuration

CPU 2x Intel Xeon Gold 6126 @2.60GHz [24 cores]
Memory 192 GiB DDR4

Disks 2x 480 GiB SSD SATA Intel (OS, root volumes)
4x 4 TiB HDD SAS (data)

Network 2x10 Gbps

C. CPU Scaling Policy

A request to scale up/down the CPU shares of an appli-
cation, which groups multiple containers, must be translated
to individual requests for each container during step 4 of
Figure 1. Considering that such request can only be to either
decrease or increase the CPU limit to lower or raise energy
consumption, respectively, the policy to translate such appli-
cation requests to container requests can be determined as
follows: 1) if the request is to increase the CPU limit, the
policy raises it to those containers that have a lower CPU
utilization; 2) if the request is to decrease the CPU limit, the
policy reduces it to those containers with the highest CPU
usage, considering that this is the fastest way of decreasing
the overall energy consumed by the application.

V. BIG DATA USE CASES

To analyse the efficiency of our energy control policy, we
consider a realistic Big Data setup with two experiments that
represent use cases from different domains. These experiments
are evaluated to show the feasibility and effectiveness of the
proposed platform with different objectives to prove: 1) static
power budgeting using a machine learning workload; and 2)
user-level budgeting using a streaming application. It is worth
noting that although the deployed applications use Big Data
technologies, they do not rely heavily on I/O but rather on
in-memory processing and thus they are mainly CPU-bound.

The characteristics of the hardware used and the configuration
of the platform are detailed in Section V-A, whereas the
experiments are described in Section V-B.

A. Hardware & Platform Configuration

To deploy the experimental testbeds, several nodes from the
Grid’5000 infrastructure [23] have been used, referred to from
now on as ‘hosts’. The experiments are carried out on LXC-
based container clusters deployed using physical hosts with
the hardware characteristics described in Table II. Each LXC
container runs Ubuntu 18.04 LTS and Java JDK 1.8.0 212,
and it is deployed with a maximum of 600 CPU shares and
45 GiB of memory. Four containers per host are used, as this
is a good ratio to distribute the pool of host resources across
a set of containers to avoid either a group of containers with
few but fat instances, or many but thin instances. Regarding
the tools, BDWATCHDOG and POWERAPI have a monitoring
polling frequency of 5 seconds, while the container resource
scaler tool uses a policy to scale CPU resources using energy
as input metric and works with 40-second time windows.

B. Experimental Results

The results for the two experiments are presented next. All
the plots show the aggregated CPU usage (shares) and energy
consumption (Joules) during the execution of the experiments.
Although the plots only show the most representative execu-
tion for each experiment, the metrics provided are obtained
from the average of a minimum of 5 executions.

1) Static Power Budgeting: In this experiment, a single
user deploys one application running KMEANS, an iterative
clustering technique, using Spark 2.3.0 [24]. The input dataset
contains 20 million samples and the algorithm performs 10
iterations using 30 clusters. This workload was chosen due to
its iterative behaviour and variable CPU and energy patterns,
with periods of high and low load. This is useful to prove
that the platform is able to effectively throttle the energy
consumed by the applications in real time and with no previous
information about the workloads. To run the experiment, 8
hosts are used to deploy a 32-container cluster with Hadoop



Fig. 3: CPU usage and energy consumption for KMEANS (top plots: baseline scenario, bottom plots: capped scenario)

2.9.0 [25]. The Big Data Evaluator (BDEv) tool [26] is used
to set up Hadoop and to run the workloads automatically.

In order to better see the platform in action, two scenarios
are compared for this experiment, a scenario where the work-
load is executed without any power budgeting or interference
overall from the platform, referred to as baseline, and a second
one where capping is applied, named as capped. Figure 3
shows CPU usage (left plots) and energy consumption (right
plots) for KMEANS. It can be seen how after setting a limit
of 1, 500 J/s for the capped scenario, energy consumption is
brought down under control after enough time passes (around
second 600), although it has to be noted that the workload
began the execution with full CPU resources available. The
power budget set to this workload aims to bring the peaks of
energy consumption of up to 1, 800 J/s in the baseline scenario
down to under 1, 500.

It is interesting to note that the CPU limit reached at second
700 (around 12, 500 shares) appears to be lower than the one
strictly required. This in turn causes energy consumption to
drop below the maximum between seconds 700 and 800 (8th
iteration of the algorithm). During this iteration, the platform
switches to State 4 (see Table I), where the CPU usage has a
bottleneck and simultaneously the energy consumed is below
the cap. The platform tackles this issue and transitions to the
really stable State 1 by slightly increasing the CPU resources,
staying in that state for the remaining iterations.

As a result of the limit imposed, the average energy con-
sumption per second is reduced from 1, 450 J/s for the baseline
scenario to 1, 320 J/s (-9%) for the capped one. Regarding
total consumption, it is 1, 356 and 1, 638 kJ (+21%), with
runtimes of 15 and 20 minutes (+33%), respectively. The
total CPU usage (calculated as the aggregated number of
cores that the experiment used times its runtime) remains the
same for both scenarios (1, 783 core-minutes). The explanation
for these metrics lies in the fact that, while the workload is
not affected—i.e., it does the same operations—, its runtime
obviously increases due to the CPU restrictions. In turn, the
longer runtime increases the total energy consumption due to
the lack of energy proportionality of the CPU, as mentioned at
the end of Section II, which heavily penalizes longer runtimes

due to the idle energy consumption.
2) User-level Dynamic Power Budgeting: The second ex-

periment aims to show how a global power budget for the
entire infrastructure can be dynamically divided among users
according to their needs. While for the first experiment a spe-
cific power cap is used (previously acquired knowledge), this
one shows a scenario where energy is dynamically distributed.
In this experiment, there are two different users with separate
and dedicated environments running each one a streaming
application deployed across 8 containers, which consists of:
1) a data generator from HiBench 7.0 [27] (1 container); 2)
a message broker based on Kafka 2.1.0 [28] (2 containers);
and 3) a Spark 2.3.0 cluster running the FixWindow workload
(5 containers), also obtained from HiBench. In total, 16
containers are deployed across 4 physical hosts mixing the
containers of both users on each one. To simulate varying loads
for the users, the application is configured with three stream
sizes that can be changed at any time for any user, named
large (171 MiB/s), medium (76 MiB/s) and small (38 MiB/s).
The streams are processed in 10-second windows.

Figure 4 shows CPU usage and energy consumption for the
streaming application executed by both users. For this exper-
iment, three stages are created to emulate different scenarios,
named in order of execution (see Table III): 1) Balance, where
User 1 incrementally scales up its stream (3 streams, small-
medium-large) while User 2 does the same in reverse (large-
medium-small); 2) Contention, where both users process a
large stream to create a contention scenario; and 3) Efficiency,
where User 1 processes 3 consecutive large streams while User
2 first remains idle and then processes two streams of small
and large size, respectively.

The objective of these stages is different. On the one hand,
Balance and Contention aim to show how a global power
budget for the entire infrastructure can be shared and balanced
among users and their applications. The difference between
both lies in the fact that, while for the Balance stage the
budget is enough to accommodate both users, as their CPU
and energy requirements are inversely correlated over time,
in the Contention stage both users have simultaneously high
resource requirements and the budget has to be split. In this



Fig. 4: CPU usage and energy consumption for streaming (stages Balance, Contention and Efficiency split by dashed lines)

TABLE III: Average energy consumption per second (J/s)

Balance Contention Efficiency
stream 1 2 3 1 2 3
User 1 321 185 117 210 386 324 306
User 2 124 204 323 215 28 119 317

latter case, as the budget is not enough to process two large
streams, a scale down process has to be carried out. On the
other hand, the Efficiency stage serves to further analyse the
variation of the energy efficiency according to the load of the
underlying physical host, which unfortunately affects the users
even if their processing environments are virtually separated.

As it can be seen in Figure 4, the Balance stage lasts
from the beginning to around second 1, 400, with each stream
running for 450 seconds. An initial power budget of 650 J/s
is shared between both users according to their requirements,
shifting a budget of around 475 J/s from User 1 in the first
stream to User 2 at the end of the stage. After Balance finishes,
the Contention stage begins lasting from second 1, 400 to
around 2, 600. In this stage, the same budget (650 J/s) is
similarly split between users. However, because this budget
is insufficient to cater for both users, their applications are
scaled down from an expected average energy consumption
of around 320 J/s when processing a large stream (see first
stream of User 1 for the Balance stage in Table III) down to
210 J/s. Finally, the Efficiency stage begins at around second
2, 600 and the global power budget is increased from 650
J/s to 1, 000 J/s (in this stage the budget enforcement is not
the focus). It can be seen in Table III how the streaming
application of User 2 lowers the average energy consumption
of User 1: from 386 J/s (User 2 is idle) to 324 (-16%) and 306
(-21%) when User 2 is processing the small and large streams,
respectively. This behaviour can be explained by the fact that
the higher the underlying host utilization, the higher the energy
efficiency—i.e., less amount of energy for the same processing
requirements—. Using the energy efficiency ratio as defined
at the end of Section II, the values obtained for the Efficiency
stage are 1.02, 1.13 (+11%) and 1.24 (+22%) core-minutes/kJ
for the idle, small and large streams, respectively. This further
proves how the most efficient scenario is the one where the

underlying hosts have the CPU usage as high as possible, in
this case, when both users are processing a large stream.

VI. CONCLUSIONS

In this work, energy was presented as another system
resource that can be likewise shared and split across users,
applications and containers. Moreover, it can be capped at
the software level to ensure that energy consumption is kept
below a certain limit. To implement this concept, a power
budget platform was created by integrating and extending
several tools so that the CPU shares of containers can be scaled
down or up in order to either reduce the energy or allow it
to raise, respectively. To prove that such energy management
can be effectively carried out for Big Data applications as
a representative real-world scenario, two experiments were
deployed on the platform to expose different use cases.

The experimental results showed that it is possible to trans-
parently enforce a certain power limit without incurring any
overhead in terms of the amount of CPU required to complete
a task. However, the limit is configurable and can be adapted
to the specific needs of users and applications, particularly
useful to minimize the total energy consumption and runtime
overhead. Furthermore, our platform can manage a power
budget that is dynamically distributed between several users as
shown with the streaming application. The proposed platform
is publicly available at http://bdwatchdog.dec.udc.es/energy.

ACKNOWLEDGMENTS

This work was supported by the Ministry of Science
and Innovation of Spain (TIN2016-75845-P and PID2019-
104184RB-I00, AEI/FEDER/EU, 10.13039/501100011033);
and by Xunta de Galicia and FEDER funds (Centro de Investi-
gación de Galicia accreditation 2019-2022, ED431G 2019/01,
as well as Consolidation Program of Competitive Reference
Groups, ED431C 2017/04). The experiments were carried out
using the Grid’5000 testbed, supported by a scientific interest
group hosted by Inria and including CNRS, RENATER and
several universities as well as other organizations.

http://bdwatchdog.dec.udc.es/energy


REFERENCES

[1] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud
computing and emerging IT platforms: vision, hype, and reality for
delivering computing as the 5th utility,” Future Generation Computer
Systems, vol. 25, no. 6, pp. 599–616, 2009.

[2] I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, and
S. U. Khan, “The rise of big data on cloud computing: review and open
research issues,” Information Systems, vol. 47, pp. 98–115, 2015.

[3] M. Xu, A. N. Toosi, and R. Buyya, “iBrownout: an integrated approach
for managing energy and brownout in container-based clouds,” IEEE
Transactions on Sustainable Computing, vol. 4, no. 1, pp. 53–66, 2018.

[4] A. Paya and D. C. Marinescu, “Energy-aware load balancing and
application scaling for the cloud ecosystem,” IEEE Transactions on
Cloud Computing, vol. 5, no. 1, pp. 15–27, 2015.

[5] G. L. Stavrinides and H. D. Karatza, “An energy-efficient, QoS-aware
and cost-effective scheduling approach for real-time workflow appli-
cations in cloud computing systems utilizing DVFS and approximate
computations,” Future Generation Computer Systems, vol. 96, pp. 216–
226, 2019.

[6] N. Kim, J. Cho, and E. Seo, “Energy-credit scheduler: an energy-
aware virtual machine scheduler for cloud systems,” Future Generation
Computer Systems, vol. 32, pp. 128–137, 2014.

[7] F. Almeida, M. D. Assunção, J. Barbosa, V. Blanco, I. Brandic,
G. Da Costa, M. F. Dolz, A. C. Elster, M. Jarus, H. D. Karatza et al.,
“Energy monitoring as an essential building block towards sustainable
ultrascale systems,” Sustainable Computing: Informatics and Systems,
vol. 17, pp. 27–42, 2018.

[8] M. E. M. Diouri, M. F. Dolz, O. Glück, L. Lefèvre, P. Alonso, S. Catalán,
R. Mayo, and E. S. Quintana-Ortı́, “Assessing power monitoring ap-
proaches for energy and power analysis of computers,” Sustainable
Computing: Informatics and Systems, vol. 4, no. 2, pp. 68–82, 2014.

[9] R. Brondolin, T. Sardelli, and M. D. Santambrogio, “DEEP-mon:
dynamic and energy efficient power monitoring for container-based
infrastructures,” in Proceedings of the 32nd IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW 2018),
Vancouver, BC, Canada, 2018, pp. 676–684.

[10] A. Asnaghi, M. Ferroni, and M. D. Santambrogio, “DockerCap: a
software-level power capping orchestrator for Docker containers,” in
Proceedings of the 14th IEEE International Conference on Embedded
and Ubiquitous Computing (EUC 2016), Paris, France, 2016, pp. 90–97.

[11] D. Merkel, “Docker: lightweight Linux containers for consistent devel-
opment and deployment,” Linux Journal, vol. 239, pp. 76–91, 2014.

[12] D. Bernstein, “Containers and cloud: from LXC to Docker to Kuber-
netes,” IEEE Cloud Computing, vol. 1, no. 3, pp. 81–84, 2014.

[13] L. A. Barroso and U. Hölzle, “The case for energy-proportional com-
puting,” Computer, vol. 40, no. 12, pp. 33–37, 2007.

[14] D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso, and C. Kozyrakis,
“Towards energy proportionality for large-scale latency-critical work-
loads,” in Proceedings of the 41st ACM/IEEE International Symposium
on Computer Architecture (ISCA 2014), Minneapolis, MN, USA, 2014,
pp. 301–312.

[15] R. Sen and D. A. Wood, “Energy-proportional computing: a new
definition,” Computer, vol. 50, no. 8, pp. 26–33, 2017.

[16] G. Fieni, R. Rouvoy, and L. Seinturier, “SmartWatts: Self-calibrating
software-defined power meter for containers,” in Proceedings of the
20th IEEE/ACM International Symposium on Cluster, Cloud and Internet
Computing (CCGrid 2020), Melbourne, Australia, 2020, pp. 479–488.

[17] M. Colmant, M. Kurpicz, P. Felber, L. Huertas, R. Rouvoy, and A. Sobe,
“Process-level power estimation in VM-based systems,” in Proceedings
of the Tenth European Conference on Computer Systems (EuroSys’15),
Bordeaux, France, 2015, pp. 14:1–14:14.

[18] E. A. Santos, C. McLean, C. Solinas, and A. Hindle, “How does Docker
affect energy consumption? Evaluating workloads in and out of Docker
containers,” Journal of Systems and Software, vol. 146, pp. 14–25, 2018.

[19] D. De Sensi, M. Torquati, and M. Danelutto, “A reconfiguration al-
gorithm for power-aware parallel applications,” ACM Transactions on
Architecture and Code Optimization, vol. 13, no. 4, pp. 43:1–43:25,
2016.

[20] D. De Sensi, T. De Matteis, and M. Danelutto, “Simplifying self-adaptive
and power-aware computing with Nornir,” Future Generation Computer
Systems, vol. 87, pp. 136–151, 2018.

[21] J. Enes, R. R. Expósito, and J. Touriño, “Real-time resource scaling
platform for big data workloads on serverless environments,” Future
Generation Computer Systems, vol. 105, pp. 361–379, 2020.

[22] ——, “BDWatchdog: real-time monitoring and profiling of big data
applications and frameworks,” Future Generation Computer Systems,
vol. 87, pp. 420–437, 2018.

[23] Grid’5000 testbed for experiment-driven research. [Online]. Available:
https://www.grid5000.fr

[24] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin, A. Ghodsi,
J. Gonzalez, S. Shenker, and I. Stoica, “Apache Spark: a unified engine
for big data processing,” Communications of the ACM, vol. 59, no. 11,
pp. 56–65, 2016.

[25] The Apache Software Foundation. Apache Hadoop. [Online]. Available:
http://hadoop.apache.org

[26] J. Veiga, J. Enes, R. R. Expósito, and J. Touriño, “BDEv 3.0: energy
efficiency and microarchitectural characterization of big data processing
frameworks,” Future Generation Computer Systems, vol. 86, pp. 565–
581, 2018.

[27] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang, “The HiBench bench-
mark suite: characterization of the MapReduce-based data analysis,” in
Proceedings of the 26th International Conference on Data Engineering
Workshops (ICDEW 2010), Long Beach, CA, USA, 2010, pp. 41–51.

[28] N. Garg, Apache Kafka. Packt Publishing Ltd., 2013.

https://www.grid5000.fr
http://hadoop.apache.org

	Introduction
	Background
	Related Work
	Power Budget Platform
	Architecture Overview
	Power Budgeting Policy
	CPU Scaling Policy

	Big Data Use Cases
	Hardware & Platform Configuration
	Experimental Results
	Static Power Budgeting
	User-level Dynamic Power Budgeting


	Conclusions
	References

